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Abstract—Every year, the U.S. economy loses more than $411 billion because of work performance reduction, injuries, and traffic

accidents caused by microsleep. To mitigate microsleep’s consequences, an unobtrusive, reliable, and socially acceptable microsleep

detection solution throughout the day, every day is required. Unfortunately, existing solutions do not meet these requirements. In this

paper, we propose WAKE, a novel behind-the-ear wearable device for microsleep detection. By monitoring biosignals from the brain,

eye movements, facial muscle contractions, and sweat gland activities from behind the user’s ears, WAKE can detect microsleep with a

high temporal resolution. We introduce a Three-fold Cascaded Amplifying (3CA) technique to tame the motion artifacts and

environmental noises for capturing high fidelity signals. Through our prototyping, we show that WAKE can suppress motion and

environmental noise in real-time by 9.74-19.47 dB while walking, driving, or staying in different environments, ensuring that the

biosignals are captured reliably. We evaluated WAKE using gold-standard devices on 19 sleep-deprived and narcoleptic subjects. The

Leave-One-Subject-Out Cross-Validation results show the feasibility of WAKE in microsleep detection on an unseen subject with

average precision and recall of 76 and 85 percent, respectively.

Index Terms—Behind-the-ear sensing, microsleep detection, drowsiness monitoring, wearable devices, cyber-physical systems
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1 INTRODUCTION

MORE than 65 million people in the U.S. suffer from
Excessive Daytime Sleepiness (EDS) due to sleep dep-

rivation, obstructive sleep apnea, and narcolepsy [1]. EDS
often results in frequent lapses in awareness of the environ-
ment (i.e., microsleeps). Healthy people with sleep depriva-
tion usually experiences microsleep [1]. Shift workers, night
time security guards, and navy sailors with sleep problems
have a 1.6x higher risk of being injured, causing 13 percent
of all work injuries [2]. Sleepy drivers are at a 3x higher risk
of an accident causing one in five fatal car crashes [3].

People with sleep apnea also suffers from microsleep. The
microsleep issue due to sleep apnea alone leads to a loss of
nearly $150 million every year due to daily work perfor-
mance reduction and vehicle accidents [4]. Additionally,
more than half of Narcoleptic people are unemployed
because of uncontrollable microsleep [5]. They often use
Amphetamines to keep themselves awake, resulting in
many drug overdose cases [6]. Combined, the sleepiness
problem of drivers and the workforce costs the U.S. up to
$411 billion annually [7].

Polysomnography (PSG) and camera-based solutions
have been used for microsleep detection. In particular, the
Maintenance of Wakefulness Test (MWT) using PSG [8] is
the medical gold standard to quantify microsleep based on
the electrical signals from the human head, such as brain

waves, eyes ball movements, chin muscle tone, and behav-

iors including eyelid closure, eye blinks, and head nods.

This method requires a complicated setup performed by
trained technicians in a controlled clinical environment.

Using cameras is another solution to detect microsleep.
This approach is the most affordable and common method
to detect microsleep for drivers [9], [10]. The camera-based

approach only captures the outer reflection of sleepiness,

such as eyelid closure and head nods and ignores the other

physiological signatures of sleepiness (e.g., brain and mus-
cle activities) [11]. Thus, it cannot capture microsleep reli-

ably if the episode happens while the subject’s eyes still

open, which often occurs [12]. Furthermore, using cameras

raises strong privacy concerns [13]. Besides, cameras are
also limited by environmental light conditions. While wear-

able cameras can address this issue, wearing a camera on

the face is not socially acceptable in daily use. For example,

the mixed criticisms of Google Glass on its privacy [14] and
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form-factor [15] have shown that wearable cameras are not

easily accepted by the public.
In this paper, we explore the challenges of building a

novel wearable physiological sensing device, called WAKE,
for microsleep detection situated only behind the ears
(BTE), as illustrated in Fig. 1a. WAKE captures the core bio-
markers that are directly related to microsleep from the
human head, namely brain waves (EEG), eye movements
(EOG), facial muscle contraction (EMG), and skin conduc-
tivity (EDA), while being light-weighted and socially-
acceptable. While WAKE is currently a standalone device, it
could be integrated with earphones and headsets (Fig. 1b),
which are already worn daily for listening to music or com-
munication. WAKE includes (1) a wearable design with cus-
tomized flexible silicon BTE earpieces, electrodes, and a
device to sense head-based biosignals, (2) a sensing hard-
ware and software platform to capture different signal types
with high fidelity while being robust to motion and environ-
mental noise, and (3) a classification model to detect
microsleep.

Challenges. To realize WAKE, we face the following key
challenges: (1) heavy noise created by motion and coupled
from the environment in daily use is the long-standing chal-
lenge limiting the practical uses of wearable biosignal sens-
ing systems, as it is difficult to ensure high fidelity signals;
(2) making a wearable, and socially-acceptable device that
can capture microsleep is non-trivial because multiple sen-
sors are usually needed to capture its core biomarkers; (3)
microsleep detection from behind the ears is an unexplored
topic where existing techniques cannot be applied directly;
and (4) the BTE biosignals are weak and overlap with each
other in the three-orders magnitude range.

Contributions. To overcome the aforementioned chal-
lenges, we make the following contributions:

(1) We devise a Three-fold Cascaded Amplifying (3CA)
hardware technique to make it more practical by
ensuring high fidelity signals while mitigating
motion and environmental noises.

(2) We identify and localize the minimum number of
areas behind human ears where biomarkers from the
brain, the eyes, facial muscles, and sweat glands can
be captured reliably for microsleep detection.

(3) We design and prototype a wearable, compact, and
socially acceptable device that can capture multiple
head-based physiological signals.

(4) Using a wide range of microsleep biomarkers as fea-
tures, we developed a hybrid model of a hierarchical
classification model and EMG-event-based heuristic
rule to detect users’ microsleep.

(5) We evaluate the proposed system using our custom-
built prototype on 19 subjects. In Leave-One-Subject-
Out Cross Validation (LOSOCV), the system obtains
76 percent precision and 85 percent recall, showing
the feasibility for microsleep detection of WAKE on
an unseen subject.

Potential Applications. WAKE aims to support a wide
range of applications where microsleep detection is essen-
tial to ensure user’s safety, such as patients with narcolepsy
and sleep disorders, heavy machine workers, shift workers,
night time security guards, drivers, pilots, and sailors
(Fig. 1b). WAKE can also be used for continuous monitoring
applications, such as epileptic seizure warning, focus super-
vising, ADHDmonitoring, etc.

2 UNDERSTANDING MICROSLEEP

In this section, we discuss the background knowledge on
the physiology and manifestation of microsleep and explain
why building a wearable and socially acceptable solution
for microsleep detection is challenging.

The Manifestation of Microsleep. The Orexin system is a
wakefulness network throughout the whole central nervous
system, as illustrated in Fig. 2. It promotes neuron activity
in the mid-brain, the cerebrum, and the visual cortex. These
neuronal activities are represented through brain waves,
such as fast Beta (b) and Alpha (a) waves while the brain is
wakeful and conscious, and the slow Theta (u) waves when
the brain experiences sleepiness. Furthermore, studies on
animals [16] have shown that Orexin neurons modulate
pupil size, eyelid position, and possibly convergence and
eye alignment via motoneurons of multiple muscle fibers.
As a result, the wakefulness state is also represented by the
movements and activities of the eyes. Additionally, several
studies [17] have shown that Orexin regulates wakefulness
in the autonomic nervous system (ANS) by activating the
ANS through projections to the ventrolateral medulla
(VLM) and spinal cord causing the inhibition of sleep. The
changes in sympathetic tone are, in turn, represented by
changes in facial muscles and sweat gland activity.

Microsleep Detection. Microsleep is the temporary episode
of losing consciousness and is the key to capturing the transi-
tion from wakefulness to sleep. A microsleep episode can last
from a few to 30 seconds and people can still wake up after an
episode. Microsleep manifests itself both behaviorally (slow-
rolling eyes, gradual eye-lid closure, head nods [18]) and

Fig. 1. Biosignals monitoring from behind the ears concept.

Fig. 2. Wakefulness neural pathway.
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electrically (shift in electroencephalography (EEG) from
fast a and b waves to slower u activities [19]). These
manifestations link to the inhibition of the Orexin sys-
tem. Microsleep is extremely dangerous for tasks requir-
ing constant awareness since people who experience MS
are usually unaware of them and still believe that they
are awake the whole time [20]. This often happens with
people who have EDS.

Conventionally, the need for placingmultiple sensors on the
user’s head to capture different biomarkers for accurate micro-
sleep detection makes it challenging to build a wearable and
socially acceptable system.As illustrated in Fig. 3b, several elec-
trodes (e.g., at least 9 in the standard PSG system [21]) are usu-
ally needed to be placed on the user’s scalp to capture brain
waves. Awearable camera or 2-4 biopotential electrodes can be
placed on the user’s eyes to capture eyemovements. To capture
facial muscle contractions, electrodes are placed on the user’s
chin. Lastly, sweat gland activity is often captured by electro-
des on the wrist or the fingers. With this amount of sensors at
different locations on the user’s head and face, achievingwear-
ability and social acceptability for microsleep detection is not a
trivial task. These studies confirm that there are four key bio-
markers that we need to capture for microsleep detection. The
remaining questions are (1) where to place the sensors, (2) how
many sensors are sufficient, and (3) how the sensors can be made to
capture this information? (Section 3).

Impact of Environmental Noises and Motion Artifacts. Vari-
ous noises and artifacts affect a wearable biosignal sensing
system. Motion artifacts and electromagnetic interference
from the environment are two major roadblocks for the
practicality of the system. Several approaches have been
proposed to address the issues of artifacts and noise such as
blind source separation with independent component anal-
ysis (ICA) or incorporating additional sensors such as iner-
tial measurement units. These approaches, however,
depend on a large number of electrodes to provide spatial
information, require significant computation, and are diffi-
cult to implement in a real-time system [22]. Throughout
our in-lab experiments using a PSG device, we found that
environmental noises generate significant impacts on the
original signal while human motion artifacts completely
distort the whole signal, making it not even usable. This
requires a novel solution to remove these noises from the signals
captured from wearable devices. (Sections 5 and 6).

3 EXPLORING MICROSLEEP BIOMARKERS FROM

BEHIND THE EARS

As mentioned in the previous Section, the ear is the intersec-
tion of multiple microsleep biomarker sources (e.g., the

brain, the eyes, facial muscles, and sweat glands) and is also
a natural harbor point where a wearable device could be
worn. While recent works on ear-based biosensing have
shown the feasibility of capturing individual biosignals
(e.g., EEG [23], EOG [24], EEG/EMG [25], and EDA [26])
from the area around and behind the ears, monitoring
microsleep-related biosignals with a wearable form-factor
has not been explored before. Thus, it is unclear about (1)
where are the best places for EEG, EOG, EMG and EDA sensors
to achieve both wearability and sensing sensitivity, (2) what is the
minimum number of required electrodes, and (3) what are the
unique characteristics of BTE signals?

The BTE Electrodes Placements. From our study on the ear
anatomy, we derive the best sensor placement locations for
microsleep detection, as shown in Figs. 3a and 4. At these
locations, we can capture signals coming from the mid-
brain area (EEG), eye movements (EOG), facial muscle con-
tractions (EMG), and sweat gland activities (EDA). These
sensor locations allow us to design a socially-acceptable
wearable device that is well-hidden behind the user’s ears
just like commercial off-the-shelf (COTS) earphones.

Fig. 4 illustrates the anatomy of the temporal bone cover-
ing the whole BTE area. It consists of two major parts, i.e.,
the Squamous and Mastoid processes. To capture EEG gen-
erated by the mid-brain area, we would want to place the
electrodes on the Squamous process, which is the thin
upper part of the temporal bone. This makes electrodes as
close to the brain as possible. Two electrodes, i.e., channel 1
on the left ear and channel 2 on the right ear, are used to
capture EEG on both sides of the brain. To capture EOG,
i.e., vertical EOG (vEOG) and horizontal EOG (hEOG), we
need to maximize the vertical and horizontal distance
between each pair of electrodes, respectively. Thus, we
place the reference electrode on the Mastoid process, which
is the thick lower part. With this setup, channel 1 can pick
up eye blinks and up/down movements, while channel 2
can capture the eyes’ left and right movements. Addition-
ally, both channel 1 and 2 can capture most of the facial
muscle activities that link to the muscle group beneath the
area behind the ears. Since EEG, EOG, and EMG are biopo-
tential signals, we can use the same electrodes. Thus, we
only need four electrodes, including two signal electrodes, a
reference, and a common ground, to capture them. Captur-
ing EDA behind the ear is promising because it has high
sweat gland density [27]. As sweat gland activities are not
symmetric between two halves of the body, placing two
electrodes on each ear is necessary to reliably capture EDA.

Examining BTE Signals. Signals captured from BTE elec-
trodes resemble the most important biomarkers of

Fig. 3. BTE versus standard locations.
Fig. 4. BTE anatomy.
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microsleep that we would expect from standard electrodes
placements (i.e, EEG, EOG, EMG, and EDA), as shown in
Fig. 5. In particular, Fig. 5a presents the a rhythms seen on
both BTE leads when the eyes are closed. Similarly, the
same features, such as eye blinks, left gaze, right gaze, teeth
grinding, and emotional arousal can be captured with BTE
electrodes, as shown in Figs. 5b, 5c, and 5d, respectively.
Thus, the results confirm that we could capture the afore-
mentioned microsleep features from only behind the ears.

There are unique challenges to BTE signals. First, BTE sig-
nals are much smaller than the ones expected with standard
placements. Particularly, the amplitude of EEG and EOG cap-
tured from BTE are all less than 50uV, which aremuch smaller
than standard placements (100-500uV)[28]. This is probably
because BTE electrodes are far from the signal sources of EEG
and EOG. Second, we notice a significant amplitude difference
(i.e., three orders of magnitude) between BTE EEG/EOG and
EMG signals, as BTE EMG events could be as strong as a few
millivolts. Moreover, the spectrogram in Fig. 5 shows that BTE
EMG events have very strong power in all frequency bands
from0.3 to 100Hz.Asweuse the sameBTE electrode to capture
EEG, EOG, and EMG, addressing the overlap of the three sig-
nals is not trivial. Low amplitude BTE EEG/EOG signal over-
lappedwith EMGmaking it challenging to ensure high fidelity
microsleep features while being robust against environmental
noise andmotion artifacts.

4 SYSTEM OVERVIEW

We design WAKE to include four main components (Fig. 6):
(1) a motion mitigation sensing hardware using the 3-folds
Cascaded Amplifying (3CA) technique, (2) a firmware
adaptively amplifies of the signals; (3) a software running
on a host device to process data from BTE sensors and
detect user’s microsleep; and (4) an ear-worn device
designed for long-time usage.

WAKEHardware.Wedesign a highly sensitive sensing cir-
cuit (Fig. 7) to capture the brain waves (EEG), polarization

signal created by eyeball activities (EOG), facial muscle con-
tractions (EMG), and electrodermal activities (EDA). In
WAKE, we derive an approach called 3CA, allowing the sys-
tem to minimize the impact of motion artifacts and environ-
mental noises in real-time at hardware and firmware levels.
The key idea is to utilize multiple buffering and amplifying
stages with precision buffers and instrumentation amplifiers
to address the effects of electrode fluctuation, cable shaking,
and environmental interference (Section 5).

WAKE Firmware. WAKE firmware is designed to control
our sensing hardware so that data from four main sensors:
EEG, EOG, EMG, and EDA can be captured reliably (Sec-
tion 6). The key challenges are that the signals are often
weak and overlap each other. Thus, we design the firmware
with three main components (1) adaptive gain control
(AGC), (2) contact quality checking, and (3) Bluetooth and
SD card streaming. AGC addresses the overlapping issue
by dynamically changing the amplifier gain based on differ-
ent signal types. Electrode contact quality is monitored so
that we can detect and remove noisy signals created by
loose electrodes. The collected data is streamed over Blue-
tooth and to an SD card for later analysis.

WAKE Algorithms. WAKE algorithms are implemented
on a host device (i.e., mobile phones, laptops, etc.). Upon
receiving the signals from the WAKE ear-worn device, the
data are separated into different streams and ready for fur-
ther processing. There are three main data streams are col-
lected including a BTE EEG/EOG/EMG signals, EDA
signal, and contact impedance signal. During signal pre-
processing, the DC, electricity noises, and other noises are
removed by DC removal, notch, median, and outlier filters,
respectively. The clean EEG, EOG, EMG, and EDA signals
obtained from pre-processing are then used for microsleep
classification. The features extracted from these signals are
later used to together with a set of machine learning algo-
rithms to detect microsleep.

WAKE Earpieces. WAKE system is designed for comfort-
able, reliable, cost-effective, and continuously collecting

Fig. 6. WAKE system overview.

Fig. 5. EEG, EOG, EMG, and EDA signals captured from behind the ears.
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behind the ear signals. To realizing that goal, we design the
earpieces by carefully sketching the device architecture and
then implementing them using off-the-shelf components.
The earpieces materials were also carefully selected ensur-
ing good contacts between the electrodes and the human
skin as well as allowing it to be comfortably worn by users.
We also validated and identified the most proper electrode
materials that provide the highest sensitivity (Section 8).

In the next section, we will discuss our proposed solution
to address one of the most important challenges of design-
ing a reliable wearable device: “how to cancel the noises cre-
ated by human motion artifacts and coupled from the
environment?”

5 MITIGATING IMPACT OF MOTIONS AND NOISE –
A HARDWARE SOLUTION

Noises created by motion and coupled from the environment
are important challenges that we need to overcome to ensure
the reliability and practicality of WAKE. These noise span
across all frequency of interest and are highly unpredictable,
making their removal non-trivial from the signal by software
methods such as filtering or ICA. In literature, Active Electro-
des (AE) [29] have been proposed to mitigate motion artifacts
and environmental interference. However, conventional AE
does not consider the unique characteristic of BTE signals,
which are (1) weak EEG and EOG signal amplitudes, (2) sig-
nals overlap with three orders of magnitudes difference, and
(3) limited spaces for BTE electrodes. We propose a technique
called Three-fold Cascaded Amplifying (3CA) on the electri-
cal pathway ofWAKE. Fig. 8 presented themodel for the 3CA
technique with three stages: (1) Stage 1 – Unity Gain Amplify-
ing, (2) Stage 2 – Feed Forward Differential PreAmplifying
(F2DP), and (3) Stage 3 – Adaptive Amplifying. The 1st and
2nd stages are implemented on our BTE earpieces, while the
3rd stage is implemented on the sensing circuit and its
firmware.

Stage 1 – Unity-Gain Amplifying. The root cause of motion
artifacts lies in the fluctuations of the wires and micro-
movements of electrodes [30]. These fluctuations create
changes in the electrical pathway resulting in measurement
noise. We address the motion artifacts by introducing the
first stage: unity-gain amplifying (a.k.a buffering). Consid-
ering the reference circuit model, as in Fig. 8, Vs is the signal
source from the ears, Cw is inherent capacitance on signal
cables, and Zc is the skin-electrode contact impedance. Vo,
A, Zi, Ri; Ci, Zo, Cp are output voltage; ideal voltage gain;
input impedance, resistance, and capacitance; output
impedance; and parasitic capacitance of each amplifier.

Since the biosignals are extremely weak (i.e., mV level),
instrumentation amplifiers are usually used to amplify the

signals, making them available for further processing. When
an instrumentation amplifier is used, we can model the
effect of motion artifacts by using the voltage gain rule
(Vo ¼ A � Vi) and Kirchhoff’s current and voltage laws (1) at
the input of the amplifier

ðVs � ViÞ=ðZc1 þ Zc2Þ � ðViÞ=ðZiÞ þ jvCpðVo � ViÞ ¼ 0:

(1)

By eliminating Vi from Eq. (1), we have a relationship
among the actual gain (G ¼ Vo=Vs) of the circuit, skin-elec-
trode contact impedance (Zc1; Zc2), and the inherent capaci-
tance on signal wires (Cw)

G ¼ A

1þ ðZc1 þ Zc2Þð 1
Ri

þ jvðCw þ Ci � ðA� 1ÞCpÞÞ
:

(2)

As motions happen, cable sway and electrode movement
create the fluctuation on Cw and Zc1 þ Zc2, respectively.
This results in the fluctuation of the actual gain (G). To mini-
mize the fluctuation effect of Cw (generated by triboelectric
processes and change of parasitic capacitance in the mea-
surement network [31]), we can use an op-amp buffer for
each electrode to convert the high impedance lines (Zc1; Zc2)
to approximately zero (Zo1; Zo2 � 0). Rewrite Eq. (2) for the
op-amp buffer in the first stage, we have

G ¼ A1

1þ Zc1ð 1
Ri1

þ jvðCw1 þ Ci1 � ðA1 � 1ÞCp1ÞÞ
¼ A1

1þ Zc1g
:

(3)

Ideally, the effect of Zc1 fluctuation can be removed if we
can satisfy the following equation: g ¼ 0. While it is very
challenging to achieve in practice, we still can make g as
close to 0 as possible. This could be done by using an ultra-
high input impedance buffer, where A1 ¼ 1; Ri1 ! 1; and
Ci1 ! 0 in our first stage. Putting a buffer circuit directly on
the electrodes is the best way to minimize Cw1. However,
this is not desirable, as we have limited space for our BTE
electrodes. We notice that as long as we keep Cw1 small and
stable, putting the circuit directly on the electrode is possi-
ble. This is done by fixing the connection between each elec-
trode and its buffer in a stable structure to avoid
triboelectric noise and shielding it by using a micro-coax
shielded cable. By driving the shield with the same voltage
as the signal from the output of the amplifier, we effectively
minimize Cw1. Up to this point, the unity-gain amplifying
stage can remove the impact of human motion artifacts.

The use of ultra-high input impedance buffers at this
stage also brings another benefit, i.e., reducing

Fig. 8. 3CA model.Fig. 7. WAKE hardware module.
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environmental noise coupled into the measurement because
of the imbalance among signal lines. When a common-
mode voltage (Vcm) is introduced to the subject body by an
environmental noise source (Vnoise) (Fig. 8), a portion of Vcm

leaks into our differential measurement and becomes noise
(Vn) because of impedance mismatch, i.e., Vn ¼ VcmðZc=ZiÞ
ððDZc=ZcÞ þ ðDZi=ZiÞÞ [32]. During a long-term measure-
ment in practice, contact impedance can easily deteriorate
(e.g., from < 10 kV to several hundreds of kV) because of
drying gel or unstable contacts [33]. Junction-gate field-
effect transistor (JFET) input amplifier is a good solution to
address this issue thanks to its extremely high input imped-
ance (1012�1015 V). Thus, we can significantly reduce Vn

making our measurement more robust against impedance
mismatch. The signals, however, need to go through
another stage to remove all the environmental noise, as
described in the following discussion.

Stage 2 – Feed Forward Differential PreAmplifying (F2DP).
To ensure robustness against environmental interference,
intuitively, we would want to preamplify our weak and
overlapped BTE signals before driving the cables to our
sensing circuit. Conventionally, if an amplifier with positive
gain (>1) is used, the equation g ¼ 0 cannot be satisfied,
making the system prone to motion artifacts. Furthermore,
electrode contact impedance mismatch, which is often seen
in practice, leads to the a gain mismatch among electrodes,
as shown in Eq. (3). Gain mismatches between two electro-
des will allow more common-mode noise to be coupled into
the system. By dividing into unity-gain and F2DP stages,
we overcome this challenge since the input impedance of
F2DP is effectively close to 0. Thus, the effect of contact
impedance will not affect the gain in the next stages.

Inspired by the robustness against noises of balanced
audio systems where preamplified differential signals are
generated before transiting over wires, differential signaling
is employed in our design. We apply the Feed-Forward (FF)
differential amplifying technique, which has been shown by
simulation in [34] to significantly increase the Common-
Mode Rejection Ratio (CMRR), i.e., the ability to reject noise
coupled from the environment, than using the conventional
Driven Right-Leg circuit (DRL) by 49 dB. The FF topology
used in [34], however, is not practical because its stability
suffers from gains mismatch when two different gain resis-
tors are used in the proposed topology. Mismatch in these
resistors causes the output common-mode level to move
with the output signal, resulting in distortion [35]. Thus, we
employ the cross-connection technique where only one gain
resistor (i.e., Rg in Fig. 8) is needed to set the gain for two FF
instrumentation amplifiers in our F2DP. After F2DP, fully
differential and preamplified signals are produced making
them robust against environmental interference while driv-
ing the cables to the sensing circuit.

F2DP only works when the DC component is removed
completely. We found that the traditional high pass RC filter
approach is not efficient in removing the DC component
(100x larger than signals of interest) because it introduces
an additional ground-path and component mismatch,
which reduces the efficiency of rejecting environmental
noise of F2DP. Balanced AC-coupling topology [36] is a
best-fit solution to overcome these challenges because it
does not introduce any additional ground-path and

minimizes the component mismatch since the pole and zero
of the filter cancel themselves out. In particular, considering
’Balanced AC-coupling’ components in Fig. 8, this topology
does not include the ground-path, thereby eliminating its
side-effects. Moreover, RC components are never precise in
practice (approximately from 1 to 20 percent error for a
capacitor) and their mismatch problem is difficult to solve.
The chosen balanced AC-coupling topology dampens these
mismatches by canceling the redundant poles and zeros cre-
ated by component mismatch [36].

Stage 3 – Adaptive Amplifying. After the previous stage,
the system can reliably collect BTE signals; we are now solv-
ing the problem of our BTE signals themselves. The unique
challenge that we need to address with our BTE signals is
the significant amplitude range differences between EEG/
EOG and EMG signals (i.e., from uV level to mV level for
EEG/EOG and EMG signals, respectively). This challenge
has not been considered in the traditional EEG system, as
EEG electrodes are placed far away from EMG sources. The
difference leads to signal saturation at the ADC on the sens-
ing circuit when EMG signals are amplified with the same
gain as EEG/EOG signals. The CMRR of the amplifier is

presented by the following equation: CMRR ¼ 10 � log A2
d

A2
cm

,

where Ad and Acm are the differential and common-mode
gain, respectively. In an instrumentation amplifier, Acm is a
constant depending on the internal resistors. Thus, CMRR
only depends on Ad. Since the difference between EMG and
EEG/EOG could be as large as three orders of magnitude,
setting the gain too low to avoid EMG saturation will also
significantly lower CMRR (up to 60 dB), increasing the noise
floor to a level where EEG/EOG signal cannot be captured.
We found that the gain needs to be dynamically adjusted in
real-time so that both small EEG/EOG and large EMG sig-
nals are captured with high resolution.

6 SIGNAL PROCESSING

6.1 WAKE On-Board Processing

Adaptive Gain Control. As aforementioned in Section 5, one
important and unique challenge in ensuring high fidelity
BTE signals is the large difference in the amplitude range
(which could be up to three orders of magnitude) between
EEG/EOG and EMG signals. Thus, the analog gain of our
sensing circuit needs to adapt dynamically with the changes
in signal amplitude. Fortunately, we observe that (1) EMG

events do not happen frequently, (2) EMG events can hap-
pen quickly with strong amplitude changes, and, (3) signal
amplitude during an EMG event is stochastic and can vary
significantly. Understand these characteristics, we then

design our AGC to (1) keep the gain at maximum for EEG/
EOG signals while there is no significant EMG events, (2)
react quickly to the abrupt increase of amplitude to detect
EMG events but (3) react slowly to the decrease of ampli-

tude while an EMG event is still happening to avoid gain
oscillation. Peak Envelope Detector (PED) and Square Law
Detector (SLD) are two popular AGC techniques [37] that fit

with our needs. We use PED because of its low computa-
tional complexity. If there is no EMG event, we use a small
window size so that PED can react quickly while a larger
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window size is used during an EMG event to avoid gain

oscillation.
We can choose the PEDwindow size based on the property

of EMG signals, sampling rate, desired response time, and the
device’s computational resource. According to [38], [39],
EMG signal has the frequency range of 1-500Hz and is most
dominant in between 50-150Hz. Thus, with the sampling rate
of 1000Hz, we can cover the EMG signal range by using the
small and large window sizes of 2 and 1000 samples, respec-
tively. With the large window size of 1000 samples, our AGC
can guarantee that the gainwill be adjustedwithin one second
after the EMG event has ended. This response time is accept-
able in our application as a microsleep can last at least a few
seconds. The small window size of two samples canmake our
AGC very sensitive even with the fastest EMG signal, but it
also increases our processor load. Since the dominant EMG
signal power is in the range of 50-150Hz, we can increase the
small window size to reduce the load. During a gain transi-
tion, the amplifier needs to be stabilized before new data can
be obtained. We can interpolate missing samples with a light-
weight linear interpolation. Fig. 9 shows an EMG event is cap-
tured without saturation by using AGC with the small and
largewindow size of 10 and 1000 samples, respectively.

S� DModulation. To ensure high signal quality during the
quantization process, we employ the S� D modulation,
which could be found in high precision Analog-to-Digital
Converters (ADCs). Low quantization noise is achieved by
utilizing oversampling, noise shaping, digital filtering, and
decimation, as illustrated in Fig. 10.With a givenADC having
the resolution of b bits, the full signal scale FS, and the quanti-
zation error (") is assumed to be a stationary, random process;
the quantization noise is a constant (s"

2 ¼ FS2=ð3 � 22bÞ) [40].
Without a noise shaping function, the quantization noise
spreads out uniformly over the Nyquist spectrum. Thus, the
power spectral density is also constant, i.e., SeðfÞ ¼ se

2=fs
with fs is the sampling frequency. Oversampling (by a factor
of K) widens the Nyquist spectrum, thereby, reducing the
quantization noise energy in the spectrum of interest, i.e.,
SeðfÞ ¼ se

2=ðKfsÞ. To further reduce the noise inside the
spectrum of interest, we pass the signal through a noise shap-
ing function called the S� D modulator. Fig. 10 presents a
first-order S� D modulator constructed as a negative feed-
back loop. By using Z-transform, we have the noise transfer
function (NTF) of the loop to be NTF ðzÞ ¼ 1� z�1 [40]. Con-
verting the NTF to the frequency domain by using trigono-
metric identities, we haveNTF 2ðfÞ ¼ 4sin2ðpf=fsÞ. Thus, the
new noise power spectral density is SeðfÞ ¼ se

2=ðKfsÞ �
jNTF ðfÞj2. Similarly, we can generalize the NTF equation for

a Nth-order S� D modulator as NTF 2ðfÞ ¼ ½2sinðpf=fsÞ�2N .
As illustrated in Fig. 10, a S� Dmodulator can shift the noise
energy to the high frequency of the spectrum. A digital filter
removes the noise power outside our spectrum of interest.
The signal is then decimated to the required sampling rate
before outputting the results. Thus, we can achieve a low
noise floor for ourmeasurement.

Contact Quality Checking. To monitor contact quality, we
inject a small sinusoidal AC current (i.e., I ¼ 6nA, 30Hz)
through the skin-electrode contact. By measuring the
response voltage, we can calculate the contact impedance
by this equation: Z30Hz ¼ VRMS;30Hz=I �Rprotection. We follow
the clinical standards as in [21] stating the acceptable upper
limit of electrode impedance is 10 kV to achieve optimal bio-
signals recording. This can be achieved with standard pro-
cedures of skin preparation and conductive gel application.
As the electrode impedance can varies over time because
the electrode contact loosens or the gel dries out, we can
notify the user to adjust contact or reapply the gel if the
impedance is higher than our defined threshold.

6.2 WAKE Physiological Signals Extraction

In WAKE, each sensor data (EEG/EOG/EMG, and EDA) is
pre-processed at the host device corresponding to their own
characteristics before putting it into the signal analyzing
procedure. We show the examples of changes in those sig-
nals between microsleep and awake states in Fig. 11. We
apply to all sensor data the notch filter to remove 50/60Hz
power line interference, linear trend removal to avoid DC
drift, and outlier filters to remove spikes and ripples.

Collecting EEG/EOG/EMG Signals. WAKE’s mixed-biosig-
nals include EEG, EOG, and EMG,which are in the frequency
range of 4-35 Hz, 0.1-10 Hz, and 10-100 Hz, respectively. We
apply different bandpass filters to split the mixed BTE biosig-
nals into the signals at the frequency range of interest. In par-
ticular, we extract wakefulness-related EEG bands (i.e u, a,
and bwaves) using 4-8Hz, 8-12Hz, 12-35Hz bandpass filters,
respectively. We extract horizontal EOG (hEOG) for eye
movement and vertical EOG (vEOG) for eye blink using 0.3-
10 Hz filters. A 10-100Hz bandpass filter and a median filter
are then applied to themixed signals to extract the EMG band
and get rid of spikes and other excessive components.

Collecting EDASignal.EDAsignal is the superposition of two
different components, skin conductance response (SCR) and
skin conductance level (SCL) at the frequency range of 0.05-1.5
Hz and 0-0.05 Hz, respectively. Even though EDA signals have
fast responses, they are very slow to decline to baseline. Thus, if
another response happens right after the first response, the

Fig. 9. EMG saturation w/o AGC. Fig. 10. S� Dmodulation.
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signal level will increase evenmore. Thus, frequency filtering is
not effective to separate EDA signal. To address this, we
employ an non-negative deconvolution technique proposed in
[41] to decompose EDA into SCR and SCL components.

7 ALGORITHMS

We present two classification methods: (1) feature engineer-
ing-based classification, and (2) deep learning on raw data.
Feature-based classification is built on well-studied micro-
sleep features with off-the-shell machine learning models.
While this approach may help the learning procedure more
stable, interpretable with less amount of data, it is labor-inten-
sive for processing features. The second approach using deep
learning tackles this issue, and has been shown to achieve the
state-of-the-art performance onmicro-sleep detection.

7.1 Classification Based on Feature Engineering

EMG Active Events Detection. Microsleep appears when the
body is relaxed. A strong EMG signal can have significant
power across all frequency bands of interest (discussed in
Section 3). It will contaminate our BTE EEG and EOG signals
rendering them unusable. We detect the active event based
on the sum of all frequency bands in the spectrogram. For
each data signal, we use the first 10 seconds as the ground-
based noise. Any data whose total spectrum energy is 10 per-
cent larger than that of ground-based is an active event.

Feature Extraction. We divide the collected time series
data from each source into fixed-size epochs. The selected
features are extracted from each epoch for classification.

Temporal Features. This category includes typical features
used in the literature for time series data analysis in the tem-
poral domain, namely mean, variance, min, max, hjorth,
skewness, and kurtosis. In microsleep detection, EOG, EMG,
and EDA signals are often analyzed in the time domain due
to their considerable variation in amplitude and lack of dis-
tinctive frequency patterns [42]. Those six temporal features
are extracted from each of hEOG, vEOG, EMG, and EDA sig-
nals for a total of 24 temporal features. We use wavelet
decomposition for the hEOG signal to extract saccade fea-
tures, namely mean/max velocity, mean/max acceleration,
and amplitude range. Eyeblink features, namely mean/max
amplitude, peak closing velocity, peak opening velocity, and
closing time are extracted from the vEOG signal.

Spectral Features. The spectral features are extracted to
analyze the characteristics of the EEG signal because brain-
waves are generally available in discrete frequency ranges
at different stages. Those features include the ratio of
powers, absolute powers, u=b, a=b, u=a, and u=ðbþ aÞ.

Accordingly, 14 features are extracted from each channel of
EEG providing 28 spectral features in total.

Non-Linear Features. Bioelectrical signals show various
complex behaviors with nonlinear properties. In particular,
the chaotic parameters of EEG can be used for microsleep
detection. The discriminant ability of nonlinear analyses of
EEG dynamics is demonstrated through the measures of
complexity such as correlation dimension, Lyapunov expo-
nent, entropy, fractal dimension, etc. [43], with the last two
features proven to be most informative. In this study, we
extract these two non-linear features for each of the two
EEG channels (a total of four features).

Feature Selection. When all features are used altogether,
irrelevant correlated features or feature redundancy can
degrade the performance. Therefore, we adopt three feature
selection methods, including Recursive Feature Elimination
(RFE), L1-based, and tree-based feature selection to select
the set of most relevant features. RFE is a greedy optimiza-
tion algorithm that removes the features whose deletion
will have the least effect on training error. L1-based feature
selection is used for linear models, including Logistic
Regression and SVM. In our linear models, we use the L1
norm to remove features with zero coefficients. Finally, the
feature importance ranking generated by the tree-based
model is used to eliminate irrelevant descriptors.

Microsleep Classification.Various classificationmethods from
Support Vector Machine (SVM), Linear Discriminant Analysis
(LDA), Logistic Regression (LR), Decision Tree (DT) to ensem-
ble methods like RandomForest or AdaBoost have been pro-
posed in the literature for awake and microsleep classification,
each shown to be effective in specific settings [44]. To copewith
the high complexity of our collected signals, we developed a
hierarchical stack of three base classifiers. Our hierarchical
model consists of a Random Forest classifier (with 50 estima-
tors) in the first layer, Adaboost classifier (with 50 tree estima-
tors) in the second layer, and SVM (with RBF kernel) in the last
layer. Specifically, for the first two layers, we only keep the pre-
dictions with high probabilities (>0:7) and transfer the rest of
samples to the next layer. In the last layer, SVM classifies all of
the remaining samples. We also apply a heuristic rule to the
final predication based on the knowledge that an EMG event is
likely to leads to an ‘awake’ event. The results of our empirical
analysis are presented in Section 9, which highlights the overall
accuracy of the performance and proves the efficiency of the
proposed classificationmodel.

7.2 Deep Learning on Raw Data

Deep neural networks (DNNs) is a branch of Artificial Neu-
ral Network which can model highly complex nonlinear

Fig. 11. Signals captured by WAKE during the transition between awake and microsleep.
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functions. An advantage of DNNs compared to other
machine learning algorithms is its ability to automatically
learn features from raw inputs. Also, DNNs usually require
less manual adjustments even though they need more data
and computations, thus being easier to deploy andmaintain.

Modified Sorsnet. while deep learning community has exten-
sively studied perceptual data (e.g., image, audio, text), brain
signals are still under-explored. Recent works from sleep stag-
ing and microsleep detection have demonstrated the effective-
ness of DNNs, especially Convolutional Neural Networks
(CNNs) in learning meaningful patterns of EEG signals. We
make use of a relevant CNN architecture proposed by [45] as it
achieves the state-of-the-art performance for sleep classifica-
tion using a single EEG channel. This model contains 12 1-D
convolutional blocks followed by 2 fully connected layers.
Each block consists of a 1-D convolution layer, a BatchNorm
layer and a ReLU activation function. As our data contain 24 1-
D signals, wemodify this architecture by stacking these signals
into a 24-channel signals and update the input channel of the
first convolutional layer. For training, we use cross-entropy
loss [46], Adam optimizer [47] with b1 ¼ 0;b1 ¼ 0:99, and
Lambda scheduler for the learning rate decay.We train the Sor-
Net model with 200 epochs. To derive the best hyper-parame-
ter, we apply the grid search for learning rate in ½1e�4; 0:1�, and
find out that learning rate 0.002workswell for us inmost of the
cases. We use an additional validation set on the precision
score to overcome the over-fitting and pick the bestmodel.

8 IMPLEMENTATION

Earpieces’ Material. We design the BTE biosensing earpieces
by attaching electrical conductive material on top of a sili-
cone base as illustrated in Fig. 12. The silicone material
(Dragon Skin 10) is chosen so that the earpiece can fit with
the curve created by the mastoid process, while being com-
fortable and alterable with different user’s ears (Figs. 12 and
13). Furthermore, the chosen silicone material is skin safe
and does not create irritation to the user’s ears. The silicone
base is molded based on the average size of the human
ear [48]. To maintain a good contact between the electrodes
and skin, we put a memory wire inside the silicone base.
The memory wire creates a grip on the wearer’s ears, push-
ing the silicone against the skin. It helps the earpieces be
usable for different human ear sizes and shapes.

Electrodes’ Material. We evaluated three different materials
for the electrodes attached to the earpieces including (1) silver
fabric, (2) copper pad and (3) gold-plated copper pad. The sil-
ver fabric electrodes are highly conductive and canmake good
contact with the skin thanks to the flexibility of the fabric, but

the silver gets tarnished quickly because of the skin oil and
sweat. Thus, the contact quality degrades after several uses as
the resistance increases dramatically from less than 1V to sev-
eral hundred kV. Similarly, copper-based electrodes also
degrade quality after several uses. We address that issue by
plating gold liquid over the copper electrodes, because the
gold-plated electrodes are more resistant to skin oil and sweat.
In addition, gold is well-known to be chemically inert. Thus,
the skin allergy with gold is extremely rare. The resistance of
the gold-plated electrodes is always less than 1V. To enhance
contact conductivity and adhesion, we apply Weaver’s Ten20
conductive paste on the electrodes before wearing the earpie-
ces. The contact impedance between the electrodes and the
skin is also measured to be in the range from 5 to 10 kV at
30Hz with a proper skin preparation. This impedance value
satisfies the clinical standards [21], which state the acceptable
upper limit is 10kV, to achieve optimal recordings.

Putting Things Together. We use the low power, precision
AD8244 JFET-input buffer to implement our Stage 1 of 3CA.
The AD8244 device has unity gain, very high input resistance
(i.e., 20TV), and very low input capacitance (i.e., 12pF) so that
the effect of motion and impedance mismatch can be mini-
mized as pointed out in Section 5. The precision, instrumenta-
tion amplifier AD8222 is used to implement our Stage 2
(F2DP). The preamplifying gain is chosen at 100 so the full
range of the ADC (i.e., �2.5V to 2.5V) is utilized. We use an
ultra-low noise amplifiers and 24-bits ADC chip ADS1299 to
digitize the signals. The ADS1299 provide an integrated sec-
ond-order S� D modulator. It samples the input signal at
1.024MHz and shapes the noise across theNyquist bandwidth
(i.e., 0-512 kHz). A third-order digital low-pass Sinc filter is
used to remove most of the noise at high frequency. The deci-
mator downsamples the filtered signal to 1000 Hz and 250 Hz
to be stored in a SD card and transmitted over Bluetooth,
respectively. The main processing unit (MSP432) is used to (1)
drive the analog front end on the sensing circuit, (2) to adjust

Fig. 12. 3D model.
Fig. 13. BTE silicon earpieces.

Fig. 14. WAKE circuit.
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the amplifier gain dynamically, and (3) to stream data to a host
device through Bluetooth (Fig. 14).

9 PERFORMANCE EVALUATION

9.1 BTE Signals Sensitivity Validation

In this section, we compare the ability to capture EEG, EOG,
EMG, and EDA with WAKE from BTE against the ground-
truth devices from standard placements on the scalp, the eyes,
the chin, and the wrist (Fig. 3). Ground-truth EEG, EOG, and
EMG are measured by using an FDA-approved Lifeline
Trackit Mark III device with electrodes placed at C3, C4, O1,
O2, Cz, M1, M2, upper and lower parts of the left eye (VEOG),
two sides of the left and right eyes (HEOG), and the chin (chi-
nEMG), according to the International 10-20 system. Ground-
truth EDA is measured by the BioPac’s BioNomadix Wireless
EDAAmplifier systemwith electrodes placed on the left wrist.
The data was collected for one hour while the subject sat on a
couch. We calculate Normalized Cross-Correlation (NCC)
between our BTE signals with the ground-truth ones to mea-
sure the similarity between them. The measured signals are
shown in Fig. 15. NCCs of EEG, EOG, EMG, and EDA are as
follows: Ear1-C3: 0.35, Ear1-O1: 0.28, Ear2-C4: 0.44, Ear2-O2:
0.52, Ear1-VEOG: 0.47, Ear2-HEOG: 0.59, Ear1-chinEMG: 0.62,
Ear2-chinEMG: 0.76, and EarEDA-WristEDA: 0.37. The results

show that Ear2, i.e., the channel crossing right and left ears, has
strong correlations with scalp EEG and horizontal EOG. Ear1,
i.e., the channel placed on the left ear, has a moderate correla-
tion with scalp EEG and a strong correlation with vertical
EOG. Both Ear1 and Ear2 channels have strong correlations
with chin EMG. EDA on the left ear shows amoderate correla-
tionwith the signal from thewrist.

9.2 Noise Suppression Performance

Motion Artifacts Mitigation.We evaluated the 3CA technique in
two scenarios: (1) walking and (2) sitting in a car. Each evalua-
tion is done in one hour. Evaluation (1) consists of ten minutes
of standing stationary and 50minutes of walking in a hallway.
Evaluation (2) also consists of ten minutes of sitting in a car
while it is parked in a parking lot and 50minutes of driving on
an urban road (40 mph). Evaluation (1) presents artifacts cre-
ated by human motion while evaluation (2) presents artifacts
introduced from the environment while driving. Two pairs of
electrodes are put as close as possible on the same ear of a sub-
ject so that the same signals could be obtained.

Without 3CA, the BTE EOG signals (i.e., eye blinks) are
completely distorted by significant motion artifacts. The
noise power introduced by motion is shown in Fig. 18. Dur-
ing standing and parking scenarios, BTE signals with and
without 3CA have the same power. However, during

Fig. 15. BTE EEG, EOG, EMG, and EDA signals versus ground-truth.

Fig. 16. Walking motion noise suppression.

Fig. 17. Driving motion noise suppression.

Fig. 18. Motion noise power reduction.

Fig. 19. 3CA noise reduction (In an Office).
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walking and driving, 3CA reduces the noise power by 19.47
dB and 11.87 dB. Thus, the eye blink signals are captured
reliably (Figs. 16 and 17).

Environmental Noise Reduction.We evaluated the ability to
minimize environmental noise in three different practical
environments: (1) in an office, (2) at home, and (3) inside a
car. The results of the noise spectrum are shown in Figs. 19,
20, and 21, where 3CA can reduce the noise power by 9.74
to 16.1 dB. We also found that the 60Hz noise and its har-
monics coupled from the electrical power line are the main
sources of noise while the subject is stationary. During
motion, motion artifacts are the most significant noise
source at frequency ranges 0.3-100Hz (Fig. 21).

9.3 Microsleep Detection Performance

We evaluated WAKE’s ability to detect microsleep by con-
ducting the Maintenance of Wakefulness Test (MWT),
which is the existing gold-standard for quantifying micro-
sleep [49]. We conducted three sets of experiments on the
data of 19 subjects. In the first experiment, we performed
the Leave-One-Subject-Out Cross-Validation (LOSOCV),
i.e., train each classifier on the set of 18 subjects and evaluate
on the unseen subject. The second and third sets deal with
each individual subject, in which we provided test-set and
10-folds cross-validation. Also, we conduct these sets of
experiments on 4 different epoch sizes: 3s, 5s, 7s, 9s.

Experimental Protocol. WAKE protocol has been thoroughly
designed and approved by the Institutional Review Board. 19
sleep-deprived and narcoleptic subjects on the campus were
recruited for the study. Participants’ demographics are shown
in Table 1. The Sleepiness Level of each subject was recorded
by using the Epworth Sleepiness Scale (ESS). The ESS score is
interpreted as < 10, healthy level; 10-15, Excessive Daytime
Sleepiness (EDS); and 16-24, Severe Excessive Daytime Sleepi-
ness (SEDS). The subjects were advised to sleep for less than
five hours (only applied to subjects at the healthy level) on the

night before the study and also not to consume caffeine or alco-
hol products before the study so that their microsleep could be
faithfully captured. During eachMWT session, the subject was
asked to try to stay awake in a sleepiness-inducing environ-
ment. We use an FDA-Approved Video-EEG system (Lifelines
TrackitMark III) to conduct PSG as the ’ground truth’.

The MWT Protocol. We conducted two sessions of MWT
for each subject with a maximum of 40 minutes each. The
subject was asked to sit comfortably on a couch. The WAKE
device and the ’ground-truth’ PSG system were installed on
them as shown in Fig. 22. We minimized all the external fac-
tors that could affect the subject’s drowsiness by blocking
all the light and sound coming from outside of the experi-
ment room. The room was dark and its temperature was set
at the subject’s comfort levels. The subject was asked to
relax but try to keep themselves awake for as long as possi-
ble, so they would not fall asleep voluntarily. The MWT
starts when the light in the experiment room was turned
off. We woke the subject up after they fell asleep. The col-
lected PSG data was sent out for scoring by two certified
sleep experts. To handle the variation of the manual pro-
cess, one expert scored while the other expert verified inde-
pendently, and the differences were resolved by discussion.
Awake and microsleep episodes were marked down by fol-
lowing the guideline of AASM for Sleep Study [50].

Classification Evaluation Metrics. We cast the problem of
microsleep detection as a binary classification problem: pos-
itive class for microsleep epoch and negative class other-
wise. Here, we briefly describe four indices of the confusion
matrix: true positive (TP) is the number of actual positive
epochs which are correctly classified; true negative (TN) id
the number of actual negative epochs which are correctly
classified; false positive (FP) is the number of actual nega-
tive epochs which are incorrectly classified as positive; false
negative (FN) is the number of actual positive epochs which
are incorrectly classified as negative. Given these notions,
we can now define precision, sensitivity, specificity scores
as follow: Precision ¼ TP

TPþFP ;Sensitivity ¼ TP
TPþFN ; Specificity ¼

TN
TNþFP . Due to the nature of our detection problem (the
number of microsleep epochs is much less than that of
awake ones), precision, sensitivity, and specificity are pre-
ferred over the accuracy index.

Fig. 20. 3CA noise reduction (At Home).

Fig. 21. 3CA noise reduction (Inside a Car).

TABLE 1
Demographic Data of Participants

Age 18 - 44 years old

Sleepiness Level Healthy: 9, EDS: 8, SEDS: 1, Narcolepsy: 1

Gender Ratio Male: 12, Female: 7

Fig. 22. Experiment setup.
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Data Summary. Our dataset contains 19 subjects. We then
segment and label each epoch based on the epoch size. For
instance, with 5s epoch (80 percent overlap), our data con-
sists of 35,558 and 8,845 samples for awake and microsleep
states, respectively. The ratio of negative:positive is approx-
imately 4:1, as an essence of rare microsleep events. This
imbalance problem is known to severely affect the perfor-
mance of popular classification algorithms. Thus, we down-
sampled the awake set to the same amount of microsleep
data in each experiment and put this imbalance ratio (num-
ber of negative epochs/number of positive epochs) in the
weighted cost during training. For example, in the first iter-
ation of the LOSOCV experiment, we left subject 18 out for
testing and we pooled samples of all training subjects,
which consists of 32,778 negative samples and 8,572 positive
samples. We downsampled the negative samples to 8,572
instances (same as the positive one) and used the weighted
cost of 32,778:8,572 for training. For feature-based classifica-
tion, we perform experiments on 4 epoch sizes: 3s, 5s, 7s, 9s.
With the recommended epoch size of 5s, we illustrate the
promising results of deep neural networks on learning
micro-sleep from the collected signals.

Set 1: Leave-One-Subject-Out Cross Validation: we alterna-
tively trained our classifiers on the data pool of 18 subjects
and evaluated the trained model on the remaining subject.
The final scores are the average over these 19 iterations.
Tables 2 and 5 (row 1) present our results on this setting for
feature-based learning and deep learning respectively. The
hierarchical classifier achieved the best performance among
examined classifiers, obtaining approximately 0.76 on preci-
sion and just over 0.8 on specificity for all epoch sizes. The
model has a slight variation on sensitivity scores in which
the recommended size of 5-second results in the highest
sensitivity of 0.85. This result is expected as large value
shifts are known to happen across different subjects. Never-
theless, this result shows the feasibility of WAKE for micro-
sleep detection on unseen subjects.

Set 2: Test-set on Each Subject (Test-set): we applied stratified
split onto data of each subject, dividing them into two parts
with the ratio 75 percent (training): 25 percent (testing) with
respect to the percentage of positive and negative samples. We
then trained our classifiers on the training data and evaluated
the performance on the test set. Tables 3 and 5 (row 2) present
our results on this setting for feature-based learning and deep
learning respectively. Among simple classifiers, RandomForest
models with 20 estimators constantly achieved the best scores
for each of the epoch size. Compared to Setting 1 (LOSOCV),
this setting results in better evaluated scores (above 0.8 for pre-
cision and nearly 0.9 for sensitivity), which can explained by
the high similarity between datawithin a certain subject.

Set 3: 10-fold Cross Validation: we conducted cross-validation
for each subject’s data and averaged the scores for the final
results. Specifically, for cross-validation on a particular subject,
we left 1/10 of the data for evaluation and trained on the
remaining data. This procedurewas performed 10 times before
we got the average scores as the representative. Tables 4 and 5
(row 3) show our results on this setting for feature-based learn-
ing and deep learning respectively. Similar to Test-set setting,
our Random Forest classifiers were able to achieve high scores
on precision, sensitivity, and specificity over all of the subjects.

Compared to feature-based classification, deep learning
models show promising and comparable performance, espe-
cially on test-set and k-fold classification. Fig. 23 presents the
learning curves of training SorNet on the test-set setting. After
200 epochs, the training loss and precision curves reach a point
of stability. The training loss, training precision, and validation
precision converge to 0.015, 0.998, and 0.897, respectively. Our
learning curves show that the network is sufficiently expressive

TABLE 2
Evaluation Scores With Leave-One-Subject-Out Cross Valida-

tion Setting Using Feature-Based Classification, Over 4
Epoch Sizes (3s, 5s, 7s, 9s)

Epoch Precision Sensitivity Specificity

3s 0.76 0.65 0.80

5s 0.76 0.85 0.81

7s 0.76 0.61 0.81

9s 0.75 0.58 0.81

TABLE 3
Evaluation Scores With Test-Set Validation Setting Using Fea-
ture-Based Classification, Over 4 Epoch Sizes (3s, 5s, 7s, 9s)

Epoch Precision Sensitivity Specificity

3s 0.83 0.9 0.81

5s 0.87 0.9 0.87

7s 0.88 0.93 0.86

9s 0.89 0.95 0.88

TABLE 4
Evaluation Scores With 10-Fold Cross Validation Setting

Using Feature-Based Classification, Over 4 Epoch Sizes (3s, 5s,
7s, 9s)

Epoch Precision Sensitivity Specificity

3s 0.84 0.89 0.83

5s 0.88 0.89 0.96

7s 0.88 0.93 0.87

9s 0.9 0.94 0.90

TABLE 5
Evaluation Scores Using Deep Neural Network

on Raw Data With Epoch Size = 5s

Setting Precision Sensitivity Specificity

LOSOCV 0.56 0.45 0.65

Test-Set 0.86 0.85 0.86

10-Folds CV 0.88 0.89 0.88

We evaluated on 3 test settings.

Fig. 23. Learning curves of training SorNet on the test-set setting.
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and capable of learning the target classification function over
the data. Poor performance of our deep networks on on the
leave-one-subject-out setting is expecteddue to the highly com-
plex pattern of brain signals and the challenging cross-subject
phenomenon. Regarding the size of epoch, 5-second constantly
leads to reliable performance: high precision and high sensitiv-
ity with respect to the average scores, though increasing epoch
sizemay improve performance in some test settings.

Performance onMobile Devices. To evaluate the performance
of our developed Machine Learning algorithm on a mobile
device, we deploy both the features-based and deep neural
network (DNN) models on a Samsung Galaxy S10 (Android
11, 1.95-2.73GHz Octa-core CPU, 128GB Flash, 8GB RAM).
For each model, we run the classification 100 times and mea-
sure the maximum memory usage and inference latency.
Table 6 presents our experimental results with the maximum
memory usage and latency are 118MB and 72ms, respectively.
The latency of the feature-basedmodel is a bit higher than the
DNN model since we could not find equivalent native
Android libraries. Thus, it is deployed inside a virtual Linux
environment on Android. Nevertheless, we can see from the
results that the computational overhead of both feature-based
anddeep learningmodels is not significant and the developed
models can be readily deployed onmobile platforms.

9.4 Usability Analysis

WAKE Prototype Power Usage. We measured the power con-
sumption of the WAKE prototype by using a Monsoon Power
Monitor devicewith the sampling rate at 5 kHz. Eachmeasure-
ment was done in 180 s, resulting in 900k data points, to get a
stable result. At 25

�
C and 3.7V nominal battery voltage, the

average power usage of WAKE is as follows: (1) Active state
(real-time biosignals streaming with Bluetooth) consumes
241.5mW , and (2) Idle state (no streaming with only MCU is
kept running in idle mode while other components are turned
off) consumes 51.60mW . With a 600mAh Li-Po battery,
WAKE prototype can operate for 9.2 hours in Active, and stay
in Idle for 43.1 hours. Further component-level measurements
of usage power during Active were done by turning off each
component one by one and repeating the measurements.
Fig. 24 presents a full active power usage breakdown of the

WAKE device. The sensing components (amplifiers and exter-
nal ADCs) and Bluetooth communication module consume
the most of system power with the average of 93.5mW and
85.2mW , respectively. The storage module (uSD card) will
increase an additional 90.2mW if it is turned on. The process-
ing unit only consumes 62.8mW . These numbers show the
capability of ourWAKEprototype tomonitor the user’smicro-
sleep during a longduration. They could be further lowered by
optimizing Bluetooth transmission parameters and taking
advantage of deep power savingmodes of theMCU.

WAKE Prototype Thermal Profiling. We conducted thermal
measurement for the processing unit of our WAKE prototype
for 14 hours continuously. The measurement was designed to
emulate the scenario where continuous microsleep monitor-
ing is needed during normal working hours. It was divided
into three states: (1) idle (the device waits for a Bluetooth con-
nection), (2) streaming (the device streams the measured bio-
signals to both its onboard uSD Card and a Bluetooth-
connected mobile device), (3) standby (the device stops
data streaming but its Bluetooth connection is still avail-
able for future commands). The idle, streaming, and
standby states lasted for 1, 12, 1 hour, respectively. Ther-
mal data was measured by the internal temperature sen-
sor of the processing unit and reported every 5s. Fig. 25
presents our measurement results. On average, the tem-
perature of idle and standby states are 31.65 and 35.75
degrees Celsius, respectively. During streaming, the tem-
perature increases to an average of 37.38 degrees and the
peak is 38.9 degrees. According to the standard of Amer-
ican Society for Testing and Materials, 43 degrees Celsius
is the threshold for prolonged use (i.e., >8h) on human
skin without creating any injury [51]. The temperature of
our WAKE prototype is always below this threshold.

User Study.We conducted a survey to evaluate WAKE’s
usability. We distributed our survey to the 19 subjects in
our MWT study and 17 other people on the campus after
they have used the WAKE device for at least two hours.
In total, 36 people answered our survey. Fig. 26a presents

TABLE 6
Classification Performance on a Galaxy S10

Memory Usage Latency (avg./std.)

Feature-based 74MB 72.4/19.5 ms

DNN 118MB 5.74/1.93 ms

Fig. 24. Active power usage.

Fig. 25. CPU core thermal profile.

Fig. 26. User study.
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the questions that we used to ask our participants’ opin-
ions on their experience with the WAKE device. The
results show that over 85 percent of people felt comfort-
able with our WAKE device and were willing to wear it
during daily mental fatigue tasks, such as during driving,
night-time working, etc. 91.6 percent of people agree that
the WAKE device is more comfortable than the ‘ground-
truth’ device used in PSG. 62.5 percent of people found it
easy to use the WAKE device, while 16.7 percent had
some difficulties with skin preparation and putting on
the conductive paste.

We noticed that people with eyeglasses are most
likely to be affected by wearing WAKE, as both devices
need to be rested on users’ ears. Thus, to evaluate the
compatibility of WAKE and eyeglasses during daily
activities, an additional users’ study on a population of
eight people was conducted. In this study, we asked the
users to wear both WAKE and eyeglasses during their
daily working time for 3-4 hours. They were asked to
wear WAKE before wearing eyeglasses so that the eye-
glasses’ temple tips could sit on top of the WAKE’s sili-
cone earpieces. The survey questions and results are
presented in Fig. 26b. All users reported that they did
not feel disturbed during their normal activity, and
they can easily wear both WAKE and eyeglasses. 75
percent of users agree that it was comfortable to wear
both devices for long hours thanks to the softness of the
silicon. Only two users had slight discomfort because of
additional weight and the gripping force of WAKE
earpieces.

10 RELATED WORKS

Existing microsleep detection systems mainly use scalp
EEG, eye tracking with EOG or cameras, IMU, and infra-
red light. EEG and EOG signals have been widely used
to detect microsleep [52], [53]. However, the conven-
tional devices used to captured those signals can only be
used in a controlled environment and are not socially
acceptable. Camera-based approaches detect microsleep
by analyzing the movement of head and eyes [9], or
pupils’ dilation [54]. IMU sensors can be used to approx-
imate body motion corresponding to microsleep (smart-
watch [55], hairband [10]). In addition, infrared light
reflection methods monitor the eyelid movement of the
subject such as Vigo [56], BlinQ [57]. These devices can-
not recognize the inner physiological state and its reli-
ability has not been thoroughly evaluated.

In literature, there are also many drowsiness detection
and monitoring works such as [58], [59], [60]. Drowsiness
and microsleep detection works, however, should not be
treated equally. In particular, drowsiness is a physiological
state that is defined when there exists a sleep pressure,
which may cause slower reaction time or compromise
vision but does not mean fatal as our brain is still conscious
of the surrounding environment [11]. Microsleep, on the
other hand, is the brief and often fatal duration, where the
brain loses consciousness [20]. Additionally, drowsiness
detection works (especially in driving scenarios) use various
methods to quantify the existence of drowsiness such as
steering pattern monitoring, vehicle position in lane

monitoring, driver eye/face monitoring, etc. [58], which are
different from ones (i.e., brain activity represents microsleep
period) used for microsleep. Particularly, in [59], the
authors detect drowsiness by quantifying wake/sleep
epochs, however, they also state that their system is not sen-
sitive enough to detect microsleep events. In [60], lane devi-
ation in a driving simulation, which is pointed out in [58]
that it is not a reliable metric, is used as the indicator of
drowsiness.

cEEGrids [23] and TYTH [25] demonstrated the feasi-
bility to capture EEG/EMG from behind the ear. How-
ever, the ability to detect microsleep from BTE sensors
has not been evaluated before. Vital signs monitoring
using wearable and mobile sensors has also been investi-
gated in various studies such as breathing measurement
[61], stress estimation (heart rate variability, galvanic
skin response, and EMG) [26], and eating detection
(IMU, microphone, and proximity) [62], [63]. However,
to the best of our knowledge, there are no existing works
to detect microsleep from wearable BTE sensors accu-
rately and reliably.

11 DISCUSSIONS

In-the-Wild Evaluation. With the promising results from our
in-lab evaluation, we aim for a larger scale out-lab evalua-
tion. One of the key challenges is the limitation of the exist-
ing ground-truth for microsleep detection. Up to now, the
gold standard to objectively assess microsleep is based on
polysomnographic (PSG) data, which can only be con-
ducted in a controlled environment. Ground-truths based
on pupil dilation or eye-tracking have potentials and are
directions worth exploring.

Impact of Sweat Condition. While WAKE can address
motion and environmental noises, there are several artifacts
posing as challenges to the real-world usability of a wear-
able system like WAKE. For instance, sweating and hydra-
tion can introduce noises into the measurement.
Addressing these artifacts is the question that we will
explore to enhance the practicality of WAKE.

OptimizingWAKEDevice. The current prototype is designed
with off-the-shelf materials and components. Hence, it is chal-

lenging to ensure themanufacturing quality of our customized
earpieces, electrodes, and the sensing circuit. The use of wet

electrodes is also not desirable during daily usages because of

the additional steps needed to apply the conductive paste.

Besides, the current power consumption is still high. Thus,

improving the quality of our customized components, optimiz-

ing power consumption, employing dry electrodes, and a bet-

ter mechanism to maintain electrode-skin contact are

important tasks to further increase the usability of the system.
Trade-Off Between Classification Performance and Latency.

Though highly complex prediction models may improve
the accuracy, they usually take larger amount of compu-
tations because of the complex processes. We, thereby,
make use of simpler off-the-shell classifiers which are
deployed and optimized commonly in latency-sensitive
libraries. Another key part of our system is to use highly
informative expert-based features which are simple and
efficient to compute. These settings help us reduce the
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processing and inference time, shortening the latency
toward warning the user.

Feasibility of Deep Learning on Raw Data. Deep neural net-
works (DNNs) are designed to automatically extract features
from raw bio-signal data. This is a huge advantage compared
to other classical machine learning algorithms, which require
labor-intensive domain-crafted features. Shown in Table 5,
DNNs achieve high detection accuracies for both test-set and
10-fold CV evaluations, which are as good as the performance
of feature-basedmodels (Tables 4 and 3). However, we observe
a non-trivial drop of performance in LOSOCV setting. Notice
that the LOSOCV is highly challenging because bio-signal data
come from different subjects. We hypothesize that this drop is
due to large variance of inter-subjects’ signals, outliers in physi-
ological signals, and the lack of training data for DNNs. On the
other hand, classical algorithms utilize embedded prior knowl-
edge in hand-designed features to generalize better, in the low-
data regime. Nevertheless, our results illustrate the promise of
DNNs in detecting micro-sleep using our WAKE data, and
leaves an open question on improving its generalization over
different subjects.

12 CONCLUSION

We presented WAKE, a novel compact, lightweight, and
socially acceptable wearable device to detect microsleep
from behind the ears. We proposed the Three-fold Cascaded
Amplifying technique to remove the impact of motion arti-
facts and environmental noises. We evaluated the motion
and environmental noise suppression and microsleep detec-
tion performance on 19 subjects. WAKE can reduce noise
power by 9.74–19.47 dB in different practical scenarios such
as walking, driving. We develop a classification model
based on the core biomarkers of microsleep captured by
WAKE. WAKE achieves 76 percent precision and 85 percent
recall in detecting microsleep in LOSOCV.
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